

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 1 of 103 04/01/2018

INFORMATION TECHNOLOGIES FOR SHIFT TO RAIL

D1.9 ï Interoperability Framework Integrated Development

Environment

Due date of deliverable: 31/10/2017

Actual submission date: 04/01/2018

Leader/Responsible of this Deliverable: INDRA

Reviewed: Y

Document status

Revision Date Description

1 26/04/2016 First issue

2 15/06/2017 Includes Broker with managed Microservices

3 30/06/2017 Includes Common Query Engine

4 18/10/2017 Last Modifications

5 04/01/2018 Final Version after TMC Approval

Project funded from the European Unionôs Horizon 2020 research and innovation program

Dissemination Level

PU Public X

CO Confidential, restricted under conditions set out in Model Grant Agreement

CI Classified, information as referred to in Commission Decision 2001/844/EC

Start date of project: 01/05/2015

Duration: 36 months

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 2 of 103 04/01/2018

REPORT CONTRIBUTORS

Name Company Details of Contribution

INDRAôs Innovation Team INDRA Edition of the document.

UPC Universitat
Politecnica de
Catalunya

Updates on additional tooling.

Trenitalia Architecture and
Innovation

Trenitalia Updates on additional tooling.

Maria Laura Trifiletti RINA C-BE Quality check

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 3 of 103 04/01/2018

EXECUTIVE SUMMARY

This document describes the Interoperability Frameworkôs ñdevelopment environmentò, i.e. a secure,
stable and expandable set of tools, frameworks and utilities used for:

¶ development of the Interoperability Framework technical demonstrator;

¶ proof-of-concept integration testing with other components of the IT2Rail project;

¶ execution of the overall IT2Rail overall pilot implementation;

¶ further development activities in the continuation of the full SHIFT2Rail IP4 program.

The document describes therefore tooling available for development, but it is not ï in this respect ï
a description of the Interoperability Frameworkôs design or implementation. The latter is documented
in deliverable D1.8 - Proof-of-Concept Packaged Resolvers Full Features.

The elements of the development environment have been identified through a selection process
based on previous results from another Artemis R&D project, SOFIA (Smart Objects For Intelligent
Applications), participant partnerôs available tooling and qualitative and quantitative experimental
tests performed on open source frameworks, in order to identify them according to the following
criteria:

1. Support the design concepts and assumptions documented in the D7.10-Development
Readiness Review Pack (FREL);

2. Limit development effort to the specific research and innovation contents of the IT2Rail
project, selecting standard tooling for standard tasks such as managing connectivity,
persistence, web service development and conventional data manipulation;

3. Consistently with the overall objectives of the IT2Rail Project, eliminate any dependency on
proprietary or specialty technology, in order to allow for any alternate choice of
implementation of the same specifications, choose tools available under open source
licensing policies;

4. Select tooling widely known and used by participating partners in order to reduce to a
minimum, or eliminate altogether, training and support requirements;

5. Conform to general Horizon 2020 / SHIFT2Rail regulations, the Grant Agreement and the
Consortium Agreement.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 4 of 103 04/01/2018

TABLE OF CONTENTS

Report Contributors ... 2

Executive Summary .. 3

List of Figures ... 6

List of Tables .. 7

List of Abbreviations .. 10

1. Introduction ... 11

1.1 Objectives ... 11

1.2 Inputs .. 11

1.2.1 Inputs from deliverables ... 11

1.2.2 Inputs from partnerôs contributions ... 12

1.3 Main Results ... 13

1.4 Links With Other Deliverables ... 13

2. Referenced Documents .. 13

3. Functionality .. 14

3.1 Definition of the Interoperability Framework .. 14

3.2 Semantic Interoperability ... 15

3.3 Support for Services .. 15

3.4 Technical Requirements .. 16

3.4.1 Interoperability ... 16

3.4.2 Standardisation .. 16

3.4.3 Scalability .. 17

3.4.4 Decentralisation ... 17

3.4.5 Robustness .. 17

3.4.6 Security ... 17

3.5 Semantic Interoperability Approach ... 17

3.5.1 Objectives .. 17

3.5.2 Common language .. 18

3.5.3 Distributed system ... 18

3.5.4 Interoperable Framework and the semantic technology approach 19

4. Architecture ... 20

4.1 Concept Map ... 20

4.2 Service Oriented Architecture .. 21

4.2.1 Connectivity ... 21

4.3 Semantics ... 22

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 5 of 103 04/01/2018

4.3.1 Ontologies ... 22

4.3.2 Semantic Information Broker .. 22

4.3.3 Auxiliary Modules, Tools and Utilities ... 23

5. Implementation ... 23

5.1.1 Smart M3 semantic model and SOFIA Artemis Project .. 23

5.1.2 SOFIA2 as core solution for the Interoperability Framework 25

5.1.3 Common Query Engine ... 27

5.1.4 Broker with managed Microservices .. 58

5.1.5 Sofia2 API Manager ... 59

6. Operation .. 60

6.1 SOFIA2 Training Platform ... 60

6.1.1 Introduction .. 60

6.2 Services Available in SOFIA2 Web Console ... 63

6.2.1 Description of roles .. 64

6.2.2 Services available for each role (except Administrator) .. 65

6.3 APIs and SDK for SOFIA2 connected devices .. 67

6.3.1 Installing the SOFIA2 SDK ... 67

6.3.2 First steps with the SOFIA2 Console ... 68

6.3.3 Developing APPS with SOFIA2: JavaScript example ... 82

6.3.4 Developing APPs with SOFIA2 ï Java example .. 85

7. Assets Manager .. 89

7.1 Assets Types definition ... 91

7.2 Assets Lifecycle definition ... 91

7.3 Assets publisher .. 93

7.4 Assets store .. 95

8. Protégé Ontology Editor .. 96

9. Triple Store ... 97

9.1 GraphDB ... 97

9.2 Virtuoso Universal Server .. 97

10. RDF Programming Framework.. 98

10.1 Dependencies ... 99

11. Linked Data Utilities .. 102

12. Integrated Development Environment (IDE) .. 102

12.1 Eclipse .. 102

13. Conclusion .. 103

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 6 of 103 04/01/2018

LIST OF FIGURES

Figure 1: Interoperability Framework Schema ... 14

Figure 2: Travel Services Supported by the Interoperability Framework .. 16

Figure 3: Distribution of Systems .. 19

Figure 4: Data Transmission ... 20

Figure 5: Concept Map.. 21

Figure 6: Communication Schema .. 22

Figure 7: Communication Schema using Ontologies at Application Level 22

Figure 8: Semantic Information Broker (SIB) ... 23

Figure 9: Smart M3 Semantic Model ... 24

Figure 10: Interoperability Framework as Smart M3 Model ... 24

Figure 11: SOFIA2 Rebuilding .. 26

Figure 12: Service Invocation Model ... 26

Figure 13: Query Engine ... 28

Figure 14: Data Structure of QueryContext ... 33

Figure 15: UML Class Diagram CloudMdSQLExpr.. 34

Figure 16: UML Class Diagram of Hierarchy of Statement .. 37

Figure 17: UML Object Diagram of AST .. 38

Figure 18: UML Object Diagram of AST .. 39

Figure 19: UML Flow Diagram of WrapperResultSet ... 42

Figure 20: JDBC of the Wrapper Interface Entities .. 54

Figure 21: Broker with Managed Microservices ... 58

Figure 22: New External API Manager General Conf. ... 60

Figure 23: New External API Manager Operations Conf. .. 60

Figure 24: Smart Space Architecture .. 61

Figure 25: SOFIA2 Website Download Section ... 62

Figure 26: SOFIA2 Web Console with Menus ... 64

Figure 27: JUnit Test Successful ... 68

Figure 28: SOFIA2 Console Registration Page ... 69

Figure 29: SOFIA2 Console Login Page ... 69

Figure 30: Consoleôs Ontology Management Page ... 70

Figure 31: Consoleôs KP Creation Page .. 71

Figure 32: Consoleôs KP Details Page .. 72

Figure 33: Console Page Showing Token for a KP ... 73

Figure 34: Consoleôs Ontology Creation Page .. 74

Figure 35: Consoleôs My Ontologies Page .. 75

file:///D:/IT2Rail/Work%20Package%201/Deliverables/ITR-WP1-D-IND-030-03_-_D1.9_Interoperability_Framework_Integrated_Development_Environment_revTHPT_16_10.docx%23_Toc496079457
file:///D:/IT2Rail/Work%20Package%201/Deliverables/ITR-WP1-D-IND-030-03_-_D1.9_Interoperability_Framework_Integrated_Development_Environment_revTHPT_16_10.docx%23_Toc496079458
file:///D:/IT2Rail/Work%20Package%201/Deliverables/ITR-WP1-D-IND-030-03_-_D1.9_Interoperability_Framework_Integrated_Development_Environment_revTHPT_16_10.docx%23_Toc496079459
file:///D:/IT2Rail/Work%20Package%201/Deliverables/ITR-WP1-D-IND-030-03_-_D1.9_Interoperability_Framework_Integrated_Development_Environment_revTHPT_16_10.docx%23_Toc496079460

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 7 of 103 04/01/2018

Figure 36: Invalidating an Ontology ... 75

Figure 37: Consoleôs Database Query Example .. 77

Figure 38: Consoleôs SSAP Message Validation, Detail on Editor Modes 78

Figure 39: Consoleôs SSAP Message Validation ... 79

Figure 40: Consoleôs SSAP Message Validationôs Output ... 79

Figure 41: Consoleôs Rule Creation .. 80

Figure 42: Consoleôs CEP Rule Generation .. 81

Figure 43: Writing Source Code for a Script .. 82

Figure 44: JavaScript APP Screen .. 83

Figure 45: JavaScript APP Generates a Session Key ... 84

Figure 46: JavaScript APP Provides Answer to a Query ... 85

Figure 47: Setting Up Environment Variables .. 86

Figure 48: Maven Installation .. 86

Figure 49: Eclipse-based Console .. 87

Figure 50: Using Eclipse Console to change Token .. 88

Figure 51: Join in Eclipse Console .. 88

Figure 52: Query in Eclipse Console ... 89

Figure 53: Assets Manager Architecture ... 90

Figure 54: Sample Definition of an Asset Type ... 91

Figure 55: Sample Lifecycle Definition .. 92

Figure 56: Example form Generated from the Asset Type Definition ... 93

Figure 57: Example of the Asset Lifecycle Editing Interface Inside the Asset Publisher 94

Figure 58: Sample XML Content of an Asset .. 95

Figure 59: Details of an Asset inside the Store Application ... 96

Figure 60: Open Source Stack IF demonstration .. 98

LIST OF TABLES

Table 1: Referenced Documents ... 14

Table 2: SOFIA2 Reference Documents ... 27

Table 3: Command for Building Project ... 29

Table 4: CQE_HOME Directories .. 29

Table 5: Properties of the Wrapper Configuration ... 30

Table 6: CQE Manually Start Command Line .. 30

Table 7: Docker Files Start Command Line ... 30

Table 8: Maven Dependency .. 31

file:///C:/Users/maitr/AppData/Local/Temp/notes0AF1D5/ITR-WP1-D-IND-030-05_-_D1.9_Interoperability_Framework_Integrated_Development_Environment%20MLT%20Review_INDRA.docx%23_Toc502838192

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 8 of 103 04/01/2018

Table 9: Apache Derby Components Substituted for SQL Query Language 32

Table 10: CloudMdSQL Query .. 32

Table 11: CloudMdSQLParser First Method .. 33

Table 12: CloudMdSQLParser Second Method .. 34

Table 13: Apache Derby Create Function ... 35

Table 14: Example of Dynamic Parameters using WITHPARAMS .. 35

Table 15: Method to Bind all Function Statement .. 36

Table 16: CQE Generation Expression T1 ... 36

Table 17: SQL Expression .. 38

Table 18: CloudMdSQL Node and SQL Nodes Responsabilities .. 41

Table 19: Python code of a Named Table Expression to Instantiate other Named Expressions 43

Table 20: Example of Python Code which generated Method that Rapresents a named Table
Expression .. 43

Table 21: Convention for Producing Rows from Python Code ... 44

Table 22: Example of Scalars ... 44

Table 23: Return of the Scalars Expression .. 45

Table 24: Generate Executable SQL Statements for Apache Derby With Scalar Expressions 45

Table 25: Wrapper Function Method ... 46

Table 26: T0 Definition .. 46

Table 27: Specification of the Returning Column .. 46

Table 28: Specification Index for Returning Column .. 46

Table 29: WrapperFunction class methods for the Execution of Scalar Functions......................... 48

Table 30: CloudMdSQL Clauses support In Clauses .. 48

Table 31: Bind Join for SQL Subqueries ... 49

Table 32: Processing the Query Table 31 ... 49

Table 33: Processing the Query Table 31 ... 49

Table 34: Bind Join for Native/Python Subqueries .. 50

Table 35: Bind Join for Native/Python Subqueries .. 50

Table 36: Update Operations .. 50

Table 37: Translation of the Execute call into an SQL Expression .. 50

Table 38: Jena JDBC In Memory Wrapper Configuration .. 52

Table 39: Jena JDBC TDB Wrapper Configuration ... 52

Table 40: Jena JDBC Remote Endpoint Wrapper Configuration ... 53

Table 41: MySQL JDBC Wrapper ... 53

Table 42: New Wrapper Sample Query ... 56

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 9 of 103 04/01/2018

Table 43: Test Application to Run a Query that gets the SKU Code and the city of each product from
the Jena Datastore using SPARQL ... 58

Table 44: SOFIA2 Development Documents ... 63

Table 45: Services Available for Each Role ... 67

Table 46: Runtime Dependencies for the Development of the Interoperability Framework 101

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 10 of 103 04/01/2018

LIST OF ABBREVIATIONS

AREL Additional RELease

CloudMdsQL Cloud multi-data store Query Engine

CQE CloudMDS Query Engine

CREL Core RELease

FREL Final RELease

IF Interoperability Framework

IT

XML

SCXML

JSON

JDBC

SQL

API

UML

RDBMS

ODBC

IoT

SSAP

SDK

RTDB

HDB

CEP

POJO

Information Technology

Extensible Markup Language

State Chart XML

Java Script Object Notation

Java Database Connectivity

Structured Query Language

Application Programming Interface

Unified Modelling Language

Relational Database Management System

Open Database Connectivity

Internet of Thing

Smart Space Access Protocol

Software Development Kit

Real Time Database

Historic Database

Complex Engine Processor

Plain Old Java Object

OWL Ontology Web Language

RDF Resource Description Framework

SaaS

Paas

Software as a Service

Platform as a Service

SIB

KP

Semantic Information Broker

Knowledge Processor

SOA Service Oriented Architecture

SOFIA Smart Objects For Intelligent Applications

TC Travel Companion

TS

TSP

Travel Shopping

Travel Service Provider

WP Work Package

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 11 of 103 04/01/2018

1. INTRODUCTION

1.1 OBJECTIVES

According to the Technical Annex of IT2Rail, the objective of the Interoperability Framework is to
provide IT2Rail functional applications with a óweb of transportation dataô abstraction of the
distributed resources they need to operate. The abstraction is constructed by using semantic web
technology open standards with the following objectives:

1) build a set of components that effectively insulate the applications from handling the
ñmechanicsò of interoperability: semantic web service registry, semantic discovery
engine and packaged resolvers;

2) provide a shared machine-readable, explicit and formal description of the
transportation domainôs knowledge and its computational constraints: ontology
specification and registry;

3) mask underlying disparities of data formats and protocols representing the common
domain facts and events by providing for their unambiguous interpretation through the
application of the shared semantics constraints: semantic query and aggregation
engine. By eliminating the need for further, centrally governed convergence on a single
prescriptive data format or protocol, the Interoperability Framework allows for:

¶ transportation service providers to join the óweb of transportation dataô
autonomously, with minimal centralised coordination, contributing to an ecosystem
of advanced networked travel applications and services whose evolution is driven
by market forces;

¶ opening up of the domain to participation by an extended range of technology and
component suppliers as well as Travel Service providers;

¶ acceleration in the adoption of existing technical specifications for interoperability,
e.g. TAP-TSI, through the automation of data mappings and semantic
interpretation across different data formats;

¶ natural expansion of the IT2Rail Project scope into the full SHIFT2Rail IP4
objectives.

1.2 INPUTS

1.2.1 Inputs from deliverables

As inputs from other deliverables:

¶ D1.1 - IT2Rail Domain Ontology Specification and Repository. The deliverable consists
of:

o Module D1.1.1: specification document of the harmonised, integrated IT2Rail
domain ontology;

o Module D1.1.2: platform independent specification document of IT2Rail domain
ontology repository;

o Module D1.1.3: a software implementation of the ontology repository specification
that provides the WP1 Proof-of-Concept packaged resolvers and other IT2Rail

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 12 of 103 04/01/2018

work package functional applications with a shared, machine readable, formal
description of the knowledge documented in the IT2Rail domain ontology
specification, used to automate the interpretation of data exchanges between
functional applications irrespective of syntactic formats or protocols.

¶ D1.2 ï Semantic Web Services Registry. The deliverable consists of:

o Module D2.1.2: the platform independent specification document of the Semantic
Web Services Repository;

o Module D2.1.1: a software implementation of the semantic web services repository
specification that provides semantically annotated web service descriptors of
functionality requested at run-time by WP1 Proof-of-Concept packaged resolvers
and by other IT2Rail functional applications.

¶ D1.3 ï Semantic Discovery Engine. The deliverable consists of:
o Module D3.1.1: the platform independent specification document of the Semantic

Discovery Engine;

o Module D3.1.2: a software implementation of the Semantic Discovery Engine
specification that provides WP1 Proof-of-Concept packaged resolvers and other
IT2Rail functional applications with resource discovery and run-time binding
irrespective of syntactic formats or protocols.

¶ D1.4 ï Semantic Query and Aggregation Engine. The deliverable consists of:

o Module D3.4.1: the platform independent specification document of the Semantic
Query and Aggregation Engine;

o Module D3.4.2: a software implementation of the Semantic Query and Aggregation
Engine specification that implements distributed query capabilities on the web of
transportation data.

¶ D1.5 ï Interoperability Framework Integrated Development Environment. The deliverable
consists of:

o Module D3.5.1: the platform independent specification document of the
Interoperability Framework Integrated Development Environment;

o Module D3.5.2: a secure, stable and expandable development environment built
to selected standard technology resources and enhanced by a set of ad hoc
utilities to be based for development, Proof-of-Concept integration testing, support
for the IT2Rail pilot activities, and further development activities within the full
SHIFT2Rail IP4 programme.

Although the due date of all of them is M36 (22 months later from the current one), we can consider
these deliverables as artefacts that will improve the Interoperability Framework that represents the
current D1.9.

1.2.2 Inputs from partnerôs contributions

The development of the Interoperability Framework doesnôt start from scratch. We have as software
inputs:

¶ SOFIA2, partner provider ñINDRAò: Coming from the former SOFIA Artemis project
(Smart Objects For Intelligent Applications,), SOFIA2 is an enhanced version
successfully tested and deployed in real scenarios. This version has been rebuilt based

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 13 of 103 04/01/2018

on the same semantic model smart M3 but being adapted to work properly and with
robustness under real conditions. Indra will provide its SOFIA2 cloud lab for the free
research and use with no commercial purposes;

¶ Common Query Engine, partner provider ñUNIVERSITAT POLITECNICA DE
CATALUNYAò: provides a software infrastructure to allow efficient and easy to program
communication among multitude of data management systems. It allows the access to
different data sources and models, both SQL and no SQL data stores. UPC will provide
the Common Query Engine as open source.

1.3 MAIN RESULTS

The Interoperability Framework integrated development environment represents a secure, stable
and expandable development environment built on selected standard technology resources and
enhanced by a set of ad hoc tools and utilities to be used for development, Proof-of-Concept
integration testing, support for WP7 IT2Rail Pilot activities, and for further development activities
within the full SHIFT2Rail IP4 program.

Resources include:

1. Existing ontologies, web services and data sets;
2. Frameworks, libraries, plugins, triple stores, graph databases, documentation;
3. Integrated Development Environment, including editors and test suites.

Tools and Utilities include:

1. Legacy data extractors and converters;
2. Utilities to semantically annotate and link legacy data sets and web service descriptors;
3. Test utilities and emulators needed to support integration activities coordinated within

the IT2Rail WP7 package.

1.4 LINKS WITH OTHER DELIVERABLES

This development environment is used for platform-specific implementations described in
deliverables D1.1 through D1.4 and D1.6 through D1.8. It is the support for WP7 IT2Rai Pilot
activities.

2. REFERENCED DOCUMENTS

This section lists the document reference number, title, revision, and date of all documents

referenced in the specifications document.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 14 of 103 04/01/2018

Reference

Number

Title Revision Date

[1] ITR-GEN-C-DAP-006-02_-_Grant_Agreement_-

_IT2Rail.pdf

06 13/04/2015

Table 1: Referenced Documents

3. FUNCTIONALITY

3.1 DEFINITION OF THE INTEROPERABILITY FRAMEWORK

The Interoperability Framework guarantees technical interoperability of all multimodal services by
insulating consumer applications from the task of locating, harmonising and understanding an open-
ended world of data, events, and service resources, which are consequently made available ñas a
serviceò.

In compliance with the principle of openness, the Interoperability Framework is agnostic with respect
to any application requiring its services, thus allowing multiple and concurrent implementations of
the multimodal services and travel companions to access the full range of available data.

Figure 1: Interoperability Framework Schema

The Interoperability Framework realises its definition by:

¶ providing travel applications with a uniform abstraction data and services distributed
over the world wide web as a ñweb of transportation dataò in the form of linked data and
service descriptors annotated with machine-readable logical statements which
describe their semantics;

¶ providing applications with technical means to operate on such ñweb of transportation
dataò, e.g. publishing, querying, etc. where the semantic annotations are used to
automate the process of discovering and matching data sets and service descriptors.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 15 of 103 04/01/2018

3.2 SEMANTIC INTEROPERABILITY

Semantics refers to the interpretation of facts and events encoded in data in some format (or
ósyntaxô). It describes the meaning of syntactical expressions according to an axiomatic definition of
concepts and relationships, which are in themselves independent of the format chosen to represent
them, in such a way that any specific representation, or even different representations of the data
can be recognised to refer to instances of the same concepts and relationships being represented
and processed accordingly.

The process of annotation of data consists in associating the data with their meaning, or semantics,
so that the process of interpreting them can be automated, i.e. performed by machines. An example
of such ñinterpretationò that can be automated and acted upon is the mapping of one data format
into another: machines can recognise that two different data items in different formats are different
representations of the same instance of a concept, e.g. a particular train, and consequently map one
into another.

The Interoperability Framework provides such an axiomatic description of the ñknowledgeò of the
domain in the form of first order predicate logic statements expressed in a standard machine-
readable language, the problem domainôs ontology, and the tools needed to annotate data items in
any format with these statements.

The ontology constitutes therefore ñcommon languageò in which knowledge about the domain can
be expressed independently from the data formats and protocols used in exchanges. The
Interoperability Framework services use the semantic annotations, i.e. terms from this ñcommon
languageò to automate the process of discovering, inferring, mapping and processing distributed
heterogeneous data in order to relieve applications from the tasks of interoperating. Thus, the
meaning of exchanged information is no longer embedded in the applications themselves and can
be distributed in conjunction with the data using services, thus allowing machines to process the
data in any format according to their intended common meaning. This mechanism, whereby
machines interoperate across heterogeneous data formats using a common interpretation is called
semantic interoperability.

3.3 SUPPORT FOR SERVICES

As it is stablished in the Technical Annex of IT2Rail [1], since IT2Rail functional applications rely on
its capabilities for interoperability, it is important that the Interoperability Frameworkôs development
strategy be provided with óbuilt-inô characteristics accommodated to minimise possible adverse
impacts on the successful completion of the entire IT2Rail Project. It must furthermore allow for the
optimal use of the specialised technical knowledge of contributing partners, and for a smooth
transition into the full SHIFT2Rail IP4 innovation program development. In order to meet those
requirements, an iterative-incremental development strategy will be executed, in which the
interoperability framework will be constructed in repeated requirements-to-test build cycles (iteration)
of stable, executable artefacts that meet specific requirements synchronised with the development
of other work packages, adding features to the foundation provided by each previous iteration
(incremental) until completion.

The incremental functionality of the Interoperability Framework, even beyond IT2Rai project, must
be considered as input for the development strategy. IT2Rail defines three main releases: CREL
(core features), AREL (additional features and resolvers) and FREL (full features and resolvers).
The functionality of the IF must be enough to support all the core requirements (CREL), so that the
next releases (AREL and FREL) can be increased over it. This doesnôt mean that in each new
release some improvements into the IF can be included to ensure the performance, robustness and

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 16 of 103 04/01/2018

security. These new technical requirements will be identified during the proof-of-concept testing and
implemented when necessary.

Figure 2: Travel Services Supported by the Interoperability Framework

The framework will allow unprecedented services interoperability whilst limiting impacts on existing
systems, without prerequisites for further centralised standardisation. Transport industry incumbents
and newcomers will discover wide opportunities to provide new services, products and new
competitive business models.

3.4 TECHNICAL REQUIREMENTS

3.4.1 Interoperability

Interoperability represents one of the main technical requirements of the Interoperability Framework.
It must support both new and legacy systems. The framework will implement semantic
interoperability across multiple data formats, allowing unprecedented levels of interoperation of
services, while limiting impacts on existing systems, and without prerequisites for further centralised
standardisation of data formats and protocols. The Transport industry incumbents and newcomers
will discover wide opportunities to provide new services, products and new competitive business
models.

3.4.2 Standardisation

Although the ecosystem built around the IF will be based on heterogeneous systems, we need some
standards to allow the integration of all of them in order to reduce the complexity of the integration.
This standardisation must be agnostic with respect to the technical aspects underlying each system
or service, but it must allow the communication and understanding of all the systems to make
possible the interaction for the exchange of information. That is, although we must respect that each
system has got its own working language, all systems and services connected must be able to
ñtranslateò its information terms into a single ñinteraction languageò in order to allow the
understanding between each other. Using semantic interoperability, the common ñinteraction
languageò will consist in the domainôs knowledge formalisation expressed in the standard ontology
web language (OWL).

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 17 of 103 04/01/2018

3.4.3 Scalability

Scalability is a natural consequence of the interconnected systems and services' expected growth.
The interoperability framework must support the scale-up without it meaning a resource saturation
that may imply a system malfunction. To do this, the design to be considered must allow for the
resources to grow dynamically, according to the own system's growth, and even on demand to
support activity peaks. PaaS cloud solutions are outlined as a solution for resource scalability.

Another challenge showed by scalability is the system management complexity, because the
services must be coherently orchestrated in every moment. The Semantic Discovery Engine (D1.3)
is constituted as the module in charge of talking with the interoperability framework so that the
connection of a new system or service, or the disconnection of an existing system, is logically correct.

3.4.4 Decentralisation

The interoperability framework must be able to operate in a distributed environment, which will
prevent isolated errors to generate the risk of a full-system inoperability. In a decentralised distributed
environment any new or legacy system or service can continue operating normally without migrations
to new environments while at the same time it collaborates with the rest of systems and services,
thanks to the Interoperability Framework. In this sense, each of the connected systems and services
will be decentralised and the IF will become the orchestrator for all of them.

3.4.5 Robustness

The whole system orchestration relies ultimately on the IF, thus it is required for the IF to be resilient.
The IF's fault tolerance must be close to zero, requiring for back-up systems to be available to
continue with the operation in case of eventual system failure.

3.4.6 Security

System connectivity through the IF must be secure. Weak points allowing for information
eavesdropping and capture must be avoided. Should security failures exist, the IF must allow for
their early detection or, ultimately, for their discontinuation. Logging, encryption and periodical
permission refreshment are introduced as possible measures to guarantee security. Those
measures must be applied without them affecting the system's normal operation.

3.5 SEMANTIC INTEROPERABILITY APPROACH

3.5.1 Objectives

The semantic paradigm allows for the fulfilment of heterogeneous system interoperability's
technological requirements through a use approach of a compliant, simple and standard language.
It leverages existing transportation ontologies. It is also open and expandable as data providers can
join on voluntary basis by sharing data annotated with terms of the ontologyôs vocabulary.

Semantic interoperability addresses the Interoperability Frameworkôs requirements as follows:

¶ Interoperability: Through the creation of "connectors" that will allow for information
exchange using the common shared domainôs ontology. The connectors
produce/consume information via publication of services;

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 18 of 103 04/01/2018

¶ Standardisation: Using a common, shared ontology that define a standard messageôs
formal interpretation of the information to be exchanged;

¶ Scalability: Through the aggregation of systems and services that can connect to the
interoperability framework and speak the defined ontological language, and the ability
to deploy multiple consistent and concurrent instances of the interoperability framework
to match load requirements;

¶ Decentralisation: Through the use of SaaS, PaaS solutions. The information will travel
in the cloud through different distributed systems;

¶ Robustness: A failure in a satellite system will not affect the other systems exchanging
any kind of information with the former. The interoperability framework centralising the
system orchestration is identified as a critical point that will be replicated and, in case
of failure, replaced with the back-up system;

¶ Security: Exchanged information will be encrypted to travel through the net. The
systems' connectivity points will ensure security by using tokens to identify authorised
clients.

3.5.2 Common language

A common language defines an open common framework which can facilitate information exchange
between all IT2Rail actors in a secure, flexible way. It avoids the problems of:

¶ replacement of existing Information Systems;

¶ expensive IT;

¶ centralised control.

On the other hand, a common language generates two issues to be handled in order to define an
Interoperability Framework which allows seamless information exchange between the involved
applications:

¶ Make information univocally understandable with no ambiguity;

¶ Transfer appropriate information according to application needs.

The challenges associated with working with a common language are met by defining:

¶ A shared ontology providing a common interpretation of information in any format,
including:

o Annotations of local data representations with the terms of the shared,
expandable domainôs ontology;

o Usage of Data driven procedures.

¶ A service mechanism in order to exchange messages, including:

o An information flow through interoperable Web services;

o Service oriented, peer to peer architecture.

3.5.3 Distributed system

Semantics makes easy and implementation based on distributed systems:

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 19 of 103 04/01/2018

Figure 3: Distribution of Systems

A distributed system consists of several interacting applications which communicate with each other
by means of messages. Each application needs to incorporate an interface towards the other
applications. The applications are able to understand each other only because they have been
designed having in mind a set of common rules, which are embedded in the applications themselves.

3.5.4 Interoperable Framework and the semantic technology approach

Stage 1: Semantic Modelling

The semantic model defines the formal interpretation of different information structures that will be
handled in IT2Rail's functional domain. The domainôs knowledge will be encapsulated in "ontologies"
which represent concepts with properties of their own in the real world, and which contain dependent
information units. Additionally, within the semantic model, we can also establish relationships
between different ontologies. For instance, the concept "Route" can have the relationships with the
concepts "Origin" and "Destination". In turn, both the Origin and Destination concepts can have
relationships with the concept "Location", which contains properties referring instances of the
concepts "Country", "City" and "Station". The structured collection of concepts, relationships and
properties in the domain is the domainôs ontology which results from the process of semantic
modelling or ñontology engineeringò.

The difference between a traditional Entity-Relationship model, besides the fact that it provides
greater flexibility and simplicity and a lesser degree of schema normalisation, lies in that the ontology
is a set of first order predicate logic statements that can be used by machine reasoners to perform
inference tasks, for example to automatically discover equivalence relationships between two
different data representations of the same object.

The shared ontology is thus a completely structured and standardised formalisation expressed in a
single language, of information resources, allowing all the interconnected systems to ñunderstandò
each other through a common machine interpretation of different data formats.

Stage 2: Publishing information (data provider)

A way to build standard interfaces is to base them on services. Services are interfaces which allow
applications to exchange messages. They are constructs transparent to the content or

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 20 of 103 04/01/2018

communication protocols of the message exchange. Applications are therefore decoupled from the
communication aspects of the exchange.

Figure 4: Data Transmission

Publication of information allows each system or service to share this information with its peers. This
is done through the IF, which centralises the data supply from different sources.

Stage 3: Subscribing information (data consumer)

Subscription to information allows each system or service to get information that a third party has
previously shared. This is done through the IF, which coordinates the data supply from different
sources.

Stage 4: Information processing

As data processed through the IF becomes the reference component to process the information.
The IF can coordinate data storage, being thus the reference for integration with the different analytic
modules. This way, the IF itself becomes one additional data source in the landscape, with derived
information that can be used by the other systems.

4. ARCHITECTURE

4.1 CONCEPT MAP

The concept map allows to clarify what is -and what is not- the Interoperability Framework, where it
reaches and where it does not, and to know clearly the role it plays in IT2Rail.

The interoperability framework is the layer on which the IT2Rail services lean, and which we can
group in Booking & Ticketing, Trip Tracker, Travel Shopping and Business Analytics. These services
in turn support the applications offered to the users, and which have been summarised as ñTravel
companionsò in the image.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 21 of 103 04/01/2018

Figure 5: Concept Map

The interoperability framework thus does not implement neither the IT2Rail services nor its
applications, but it is the middleware allowing all of them to communicate and understand each other.
Thus, a holistic system, where the whole is greater than the sum of its parts, is built based on
solutions both new and existing in different functional domains (railway, air, bus, social networks,
etc.).

4.2 SERVICE ORIENTED ARCHITECTURE

4.2.1 Connectivity

The connectivity of the different services with the Interoperable Framework is achieved using the
paradigm Software as a Service (SaaS). The SaaS implementation is performed using SOA (Service
Oriented Architecture). SOA allows for different implementations including SOAP, REST, MQTT,
WebSockets, etc.

The interoperability framework must be compatible with the different SOA implementations, but the
connected systems require only one of them to be implemented. Therefore:

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 22 of 103 04/01/2018

Figure 6: Communication Schema

4.3 SEMANTICS

4.3.1 Ontologies

The Ontology represents the knowledge needed by applications in order to understand each other.
The meaning of exchanged information is no more embedded in the applications themselves.

Figure 7: Communication Schema using Ontologies at Application Level

4.3.2 Semantic Information Broker

It is the core of the system. It receives, processes and stores all the information from applications
connected to the IF, thus acting as an Interoperability Bus. All the existing concepts in the domain
(reflected in the ontologies) and their current states (specific ontology instances) are reflected on it.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 23 of 103 04/01/2018

Figure 8: Semantic Information Broker (SIB)

Each of the systems and services connected to the IF must have implemented a connector
("Knowledge Processor") to allow the information exchange. This Knowledge Processor will be
implemented under any of the SOA communication protocols supported by the IF, and the
information will be modelled following the semantic model specification.

4.3.3 Auxiliary Modules, Tools and Utilities

The Interoperability Framework can be complemented with a number of modules, tools and utilities
to optimise and/or complement its base functionality. Those will be open use and easy to integrate
in the architecture so that it can be made available without restrictions. Here we find, among others:

¶ Analytic capabilities that can be implemented using a set of open tools that can be
integrated in the IF;

¶ RDF data management capabilities, allow for the use of the OWL specification to
implement full-semantics;

¶ Capabilities to allow for the implementation of services such as the resolvers.

5. IMPLEMENTATION

5.1.1 Smart M3 semantic model and SOFIA Artemis Project

Description

The smart M3 model aims at providing a Semantic Web information sharing infrastructure between
software entities and devices. It combines the ideas of distributed, networked systems and semantic
web. The ultimate goal is to enable smart environments and linking of real and virtual worlds.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 24 of 103 04/01/2018

Figure 9: Smart M3 Semantic Model

The Interoperability Framework can be understood as a Smart M3 model, where the devices/agents
are the services connected and the Semantic Information Broker is the Interoperable Framework.

Figure 10: Interoperability Framework as Smart M3 Model

SOFIA Artemis project

SOFIA Artemis project (Smart Objects For Intelligent Applications) (Jan 2009 ï Dec 2012). The
mission of SOFIA project is to create a semantic interoperability platform which enables and
maintains cross-industry interoperability which is a platform for new services. The solution fosters

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 25 of 103 04/01/2018

innovation while maintaining value of existing legacy multi-vendor interoperability platform. SOFIA
builds a platform that implements the Smart M3 model.

Problems found

The free and open source Java framework Apache JENA was used for building the Semantic Web
Platform and Linked Data applications on SOFIA. Jena supports RDF, OWL and a triple Store.
Although the deployment and execution of the open framework JENA was good, when OWL was
implemented over it, performance problems appeared in terms of lack of memory and latency for
simple tests. OWL-Lite was adopted during the project as a solution. Successful results were
achieved in more complex performance tests, but still on lab conditions. Other open frameworks for
building semantic apps where analysed but without significantly better results, in particular assuming
OWL-full.

5.1.2 SOFIA2 as core solution for the Interoperability Framework

The incoming Internet of Things market demanded a platform like SOFIA. But the performance of
SOFIA on real scenarios, managing thousands of sensors and devices and requiring real-time
response, was unacceptable.

Indra, as industrial partner of SOFIA2, rebuilt the initial project taking the core concept idea of the
semantic approach and the Smart M3 model, but adapting it to be deployed in real conditions solving
the problems found.

¶ Agile technical solutions were adopted. The use of XML/WebServices was obsolete
being overcome by other solutions like JSON/RESTful with better results on complex
scenarios, with agile response time;

¶ A light version of semantics was implemented. The standard reference for semantic
modelling based on OWL was XML. It was replaced by JSON. OWL-Lite was replaced
by the definition and handling of ontologies that could be directly managed by RESTful
services. SOFIA was rebuilt from scratch and SOFIA2 was created. SOFIA2 was able
to manage the Internet of Things challenges, resigning OWL but respecting Smart M3
model in which it still stands.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 26 of 103 04/01/2018

Figure 11: SOFIA2 Rebuilding

The interoperability would be executed semantically through SOFIA2. Besides, SOFIA2 provides
integration support for the Analytics and Reporting functionalities of the IT2Rail platform.

Figure 12: Service Invocation Model

The full description of SOFIA2, functionality, key concepts, use case references, documentation for

its use and development can be found in the Table 1Table 2.

In the table we include the most important documents of SOFIA2 for its use as the Interoperability
Framework core of IT2Rail. This preliminary documentation can be completed with other available

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 27 of 103 04/01/2018

documents for the development and advance use of SOFIA2. Available at
https://sofia2.com/desarrollador_en.html#documentacion.

Title URL Description

SOFIA2 IOT

PLATFORM:

TECHNICAL VIEW

http://sofia2.com/docs/SOFIA2%20-

%20Technical%20-

%20IoT%20Platform%20(oct%202014).pdf

Technical description at high

level including use cases

references

SOFIA2

CONCEPTS

http://sofia2.com/docs/(EN)%20SOFIA2-

SOFIA2%20Concepts.pdf

Key concepts of SOFIA2

Architecture

SECURITY http://sofia2.com/docs/(EN)%20SOFIA2-

Security.pdf

Security mechanisms applied

to SOFIA2

SOFIA2 WEB

CONSOLE USE

GUIDE

http://sofia2.com/docs/(EN)%20SOFIA2-

Web%20Console%20Use%20Guide.pdf

Basic concepts of the Web

Console that is integrated in

SOFIA2ôs Platform.

ONTOLOGY

DEFINITION IN

SOFIA2

http://sofia2.com/docs/(EN)%20SOFIA2-

Ontology%20Definition%20in%20Sofia2.pdf

How to define ontologies in a

clear and simple manner

FIRST STEPS WITH

SOFIA2

http://sofia2.com/docs/(EN)%20SOFIA2-

First%20Steps%20with%20SOFIA2.pdf

How to set up

communications, sending

and receiving data

Table 2: SOFIA2 Reference Documents

5.1.3 Common Query Engine

Description

Providing massive data processing capabilities in the cloud is a major trend in the design of data
management solutions deployed on the cloud. The experience of the latest years is that no single
data management system is the silver bullet for data processing, where all the data needs can be
mapped. Currently, companies are using a variety of data solutions ranging from relational
databases to NoSQL data stores, which come in multiple flavours such as graph databases, key-
value data stores, array data stores, analytical cloud frameworks, document databases, data stream
systems, etc. SOFIA2 provides a software infrastructure to allow efficient and easy to program
communication among this multitude of data management systems. In this deliverable, we describe
the internal design, the build and the execution process of the query engine that interconnects the
data stores.

The query engine is central piece that coordinates the execution of queries in SOFIA2. This module
executes queries in the CloudMdsQL language, which defines syntax to mix the operations among
the data repositories. The data in the query engine is modelled as tabular data: sets of tuples with a
fixed number of attributes. This model is simple enough to allow importation and exportation of data
from NoSQL data representations.

Clients connecting to the SOFIA2 infrastructure will have the impression that all systems act as a
single database. In order to provide such a feeling from the client perspective, we will provide a
JDBC connector for the SOFIA2 infrastructure. JDBC is one of the standard methods to connect to

https://sofia2.com/desarrollador_en.html#documentacion
http://sofia2.com/docs/SOFIA2%20-%20Technical%20-%20IoT%20Platform%20(oct%202014).pdf
http://sofia2.com/docs/SOFIA2%20-%20Technical%20-%20IoT%20Platform%20(oct%202014).pdf
http://sofia2.com/docs/SOFIA2%20-%20Technical%20-%20IoT%20Platform%20(oct%202014).pdf
http://sofia2.com/docs/(EN)%20SOFIA2-SOFIA2%20Concepts.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-SOFIA2%20Concepts.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-Security.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-Security.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-Web%20Console%20Use%20Guide.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-Web%20Console%20Use%20Guide.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-Ontology%20Definition%20in%20Sofia2.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-Ontology%20Definition%20in%20Sofia2.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-First%20Steps%20with%20SOFIA2.pdf
http://sofia2.com/docs/(EN)%20SOFIA2-First%20Steps%20with%20SOFIA2.pdf

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 28 of 103 04/01/2018

a database system, and thus clients will connect to the database like a regular database system.
However, user queries will be able to take full advantage of the different repositories in the SOFIA2
infrastructure by introducing SQL and NoSQL statements.

Architecture

The Query Engine is able to compute queries by forwarding them to the Data Stores, and also by
combining results using the Operator Engine. The architecture of the Query Engine is based on
Apache Derby. Therefore, the Operator Engine is able to execute SQL programs that are generated
from a CloudMdsQL expression. The Query Engine has also a module, called Table Store, which
saves the tabular results of queries into disk, memory or in a remote database by JDBC. The tables
contain either the query results or temporary results that will be further processed by the Operator
Engine or any of the data stores in the SOFIA2 ecosystem.

The Cloud multi-data store Query Engine (CloudMdsQL) is a query platform integrated with a very
scalable transactional processing system that provides full ACID transactions over arbitrary sets of
cloud data stores. The Query Mediator is the component that performs communication between the
clients that implement the user functionalities, and the set of database engines in SOFIA2. The
following picture shows an overview of the Query Engine architecture:

Figure 13: Query Engine

The Query Mediator is built as an extension of the Apache Derby database and is the responsible of
creating and preparing CloudMdsQL statements. In order to prepare a CloudMdsQL statement, the
Query Mediator needs to initialise a set of structures, which determines a query context. Afterwards,
the Query Mediator invokes the compiler and generates the SQL operations to be executed. Finally,
the Query Mediator associates the byte code necessary to execute the SQL operations to the
CloudMdsQL statement. The Query Mediator is implemented as an extension of the Apache Derby
project to reuse the internal Derby Operator Engine.

The Operator Engine is used in order to describe the workflow of the query execution. Derby table
functions represent the named table expressions of a CloudMdSQL. These table functions are
created during the query context initialisation and are referenced by the generated SQL operations.
These references imply to make a table function invocation, which internally creates a statement to

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 29 of 103 04/01/2018

connect to a specific datastore or resolve a nested query. In this section, we cover which kind of
statements the CQE supports and their internal design.

Once a CloudMdsQL statement is compiled, the CQE generates the Java bytecode necessary to
make the statement executable. The instantiated SQL nodes generate this bytecode during the
compilation process. The bytecode generation is an entire functionality that originally Apache Derby
performed for SQL expressions. Thus, the Operator Engine consists of the execution process of this
generated bytecode.

A Wrapper provides the interface that attaches a data store to the CloudMDS Query Engine (CQE).
It handles fragments of the query plan that are intended for execution in a data store and delivers
interim results in the appropriate format.

The Wrapper Interface and implementations are based on the Java platform and conceptually similar
to the standard JDBC interface, namely, regarding the usage of Driver/Connection/Statement
objects to provide nested context for query execution, and a ResultSet to iterate over result data.
Namely, the main entry point to the wrapper is the DataStore interface, which provides Connection
contexts for the execution of Statements. The query is received as a Java mapping of the JSON data
model. Interaction with the Table Store is, in both directions, through the ResultSet batch iterator
interface.

Build

The CQE started from Apache Derby, but it was moved to Apache Maven [Maven] to simplify the
build process. Currently, the project can be built with the following simple command:

mvn package assembly:assembly

Table 3: Command for Building Project

This Maven command will produce the binary distribution in ñtarget/cqe-{version}-bin.zipò file.

Installation

Having the CQE binary distribution file, the next step is the installation process. If the user unzips
the file, the system will create a directory (i.e. CQE_HOME) where the user will find the following
directories:

Directory Description

bin Contains the binary files that can be executed

lib Contains the necessary Java library files necessary to start the CQE. It needs
to be upgraded with the jars provided by the wrapper implementations the
user needs.

config Config directory to put the wrapper configuration files

samples Directory with configuration examples

Dockerfile A new Docker configuration file

docker A new Docker directory with the docker scripts

Table 4: CQE_HOME Directories

The Docker files, as well as some default wrapper configurations, were added to the distribution for
an even easier setup process in the IT2Rail project.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 30 of 103 04/01/2018

Configuration

Each wrapper configuration must be stored in the ñ{CQE_HOME}/config/wrappers/ò directory. A
wrapper configuration file, which is a properties file, contains the custom datastore connection
properties and what are the implementation classes for the wrapper interfaces. Specifically, the
minimum properties set are:

Property Description

wrapper.class The wrapper implementation for the
Datastore interface.

wrapper.name The wrapper label to reference this
datastore

Table 5: Properties of the Wrapper Configuration

Sample complete configuration files are provided.

Starting the Engine

The command line tool to manually start the CQE is:

${CQE_HOME}/bin/startNetworkServer

Table 6: CQE Manually Start Command Line

But with the addition of the Docker files it may be more convenient to use docker to start a CQE
server:

docker build - t cqe/ IT2Rail CQE_HOME_DIRECTORY

docker run -- name cqe - d - p 1527:1527 cqe/ IT2Rail

Table 7: Docker Files Start Command Line

Statement Preparation

User code requests a PreparedStatement on the JDBC driver. This request is forwarded to the query
compiler through the Query Mediator. The query compilation procedure optimises and transforms
the user query into a prepared statement that is ready to be executed. To achieve this task, the
following steps are needed:

1. Send the query string written in CloudMdSQL to the compiler;
2. Parse the query plan produced by the Compiler in JSON format;
3. Create the equivalent SQL object that represents the query plan inside Apache Derby

and compile it to bytecode;
4. Initialise the internal Derby Statement that is linked to the bytecode to be executed by

the query;
5. Continue with the normal Statement initialisation that Apache Derby performs.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 31 of 103 04/01/2018

Statement Execution

User code executes the query. The CQE uses the precompiled query and executes it. As we have
commented before, wrapper queries, Python named tables and nested CloudMdSQL queries are
executed as Derby Table Functions. Probably, especially if the CQE is resolving a JOIN operation,
a table function is called more than once. It is at this point where the CQE takes profit of the table
store.

The current implementation always saves the queried data into the table store to avoid the resolution
of the same subquery multiple times.

Closing resultsets and statements

By default, the statements are configured to close all intermediate result sets when the main query
result set is closed. However, to resolve CloudMdsQL queries, the CQE may have created some
unique Derby Table Functions that also need to be removed.

Client applications with JDBC

From the perspective of a client that connects to the CoherentPaaS infrastructure, the query engine
will be seen as a database. Therefore, it was decided to implement the interaction between the
clients and the query engine as a JDBC connection, which is one of the most popular database
connection standards.

The CQE architecture is based on Derby and therefore, as we have commented before, client
applications can connect to the CQE using the Derby JDBC driver. This is a public open Java library
that can be downloaded from many repositories. In fact, the maven dependency that we are using
is

Query Mediator Architecture

The Query Mediator is built as an extension of the Apache Derby database. Therefore, many Apache
Derby components were substituted to remove the assumption that the query language is SQL
instead of CloudMdsQL. The following table shows a resume about which Apache Derby classes
were overridden (left column), which are the corresponding extensions to build a Query Mediator
(center column) and which is their responsibility (right column):

Derby Class CQE Class Responsibility

NetworkServerControl CloudMdSQLServer Starts/Stops the server

DRDAConnThread

MdSQLDRDAConnThread Create a DRDAStatement
when a new query arrives.

<dependency>

<groupId>org.apache.derby</groupId>

<artifactId> derbyclient </artifactId>

<version>10.11.1.1</version>

</dependency>

Table 8: Maven Dependency

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 32 of 103 04/01/2018

DRDAStatement CloudMdSQLStatement Compiles a query creating a
EmbedPreparedStatement

EmbedPreparedStatement CloudMdSQLEmbedStatement Creates a GenericStmt and
asks for its Java bytecode (i.e
activation).

GenericStatement CloudMdSQL2DerbyStatement Compiles the query string and
updates the
EmbedPreparedStatement
with the generated bytecode
(activation)

Table 9: Apache Derby Components Substituted for SQL Query Language

Query Context Overview

Let us see a simple CloudMdSQL query:

T1(x int , y string)@db1 = {* yield (1, ' abc ') *}

T2(x int , y string) = (SELECT T1.x, T1.y FROM T1)

SELECT T2.x, T2.y FROM T2 WHERE T2.x = 1

Table 10: CloudMdSQL Query

Each CloudMdSQL query has its own namespace, because the name of a named table expression
(e.g. T1 or T2 in the previous query) is unique inside a query. The QueryContext class represents
this namespace and it is very useful for the Query Mediator to store some useful temporary
information for query compilation and execution. All the active QueryContext instances are just
accessible and created through the CloudMdsQLManager.

Specifically, the more relevant temporal information stored inside a QueryContext is:

¶ ResultSets: Once a named table expressionôs java.sql.ResultSet object is ready to be
read, it is cached in the Query Context. It allows for other named expression to ask for their
resolution and read it. Remember that, according to the CloudMdsQL specification, there
are several ways to reference an external named table expression:

o From Python code: writing CloudMdSQL.TNAME in the body of the query;
o From nested queries. For instance, the T2 named expression, in the previous

example, references T1;
o From native named expressions related to a specific datastore with the

REFERENCING clause.

Every java.sql.ResultSet, produced during the resolution of a named expression, is an
implementation that supports multiple reads of the returned rows, through the TableStore;

¶ Statements: Each named query is resolved by the execution of an implementation of
Statement interface of the Wrapperôs API. During the query compilation process, the Query
Mediator instantiates the corresponding statement for each named table and they become
accessible to be executed in any point of the query resolution;

¶ TableExprs: Each named table expression is represented as a TableExpr object. There is
just one TableExpr per name. The QueryContext stores which is the TableExpr for a

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 33 of 103 04/01/2018

specific name, to resolve the related parameters or the returning columns during the query
compilation and execution;

¶ TxnCtx: It is the transactional context related for this query, which is a necessary object
for the eu.coherentpaas.cqe.datastore.Statement execution;

¶ CloudMdSQLStatement: It is a necessary object to run Derby SQL statements during the
compilation process of a query.

The following UML class diagram represents the data structure of QueryContext with all its
components.

Figure 14: Data Structure of QueryContext

Query Parsing

In order to parse a CloudMdSQL query, the CQE contains a Java class called CloudMdSQLParser,
which in the same moment the Java class loader initialises the class, it loads the native libraries
required by the compiler (libjcql.so for Linux or libjcql.dylib for MacOS), which are inside the CQE
classpath. Since this procedure is just executed when the CloudMdSQLParser is referenced for the
first time, it is just executed once.

Specifically, the CloudMdSQLParser has two methods:

parseQueryLanguageExpr (String expr): CloudMdSQLExpr

Table 11: CloudMdSQLParser First Method

This method parses the CloudMdsQL string as follows:

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 34 of 103 04/01/2018

1. Invoking the CQL class, which is the Query Compiler JNI interface;
2. Initialising the CQL instance with the all data stores capabilities;
3. Invoking the CQL#createParser, which returns a cql.Parser object;
4. Invoking cql.Parser#parse(String str): String , which returns a JSON string with the

query plan;
5. Returning what CloudMdSQLParser# parseQueryPlanExpr computes, with the query

plan;

parseQueryPlanExpr(String expr): CloudMdSQLExpr

Table 12: CloudMdSQLParser Second Method

This method receives a string that represents query plan (in JSON) and parses it into an equivalent
CloudMdSQLExpr Java object. To perform it, a Java library called jackson-databind is used to apply
this mapping between JSON strings and Plain Old Java Objects (POJO) using annotations.

A CloudMdSQLExpr is a composition of a set of TableExpr, which represent the different table
expressions that can be referenced with its own QueryPlan, and a main plan, which is represented
through a wrapper Operation. The following picture shows the UML class diagram related to a
CloudMdSQLExpr. The yellow boxes represent classes that are part of the wrappers API whereas
the green boxes are classes that are inside the CQE.

Query Compilation

The query compilation process consists of preparing an executable statement from a
CloudMdSQLExpr object. After this executable statement is prepared, the user can execute it
multiple times without parsing the query every time.

Since the CQE is built on top of the Apache Derby database, this task can be rewritten to generate
an SQL plan that can be executed in Derby. Therefore, a set of transformation rules between a
CloudMdSQLExpr object and a Derby SQL statement must be established. This section will explain
how named table expressions (TableExpr) are stored inside Derby to resolve them from a SQL query
plan, and how the related Operation to a CloudMdSQLExpr is transformed to SQL.

Named Table Expression Compilation

Apache Derby has several extensions mechanisms. To perform the query compilation task, the way
data is retrieved using CREATE FUNCTION statements must be enriched.

Figure 15: UML Class Diagram CloudMdSQLExpr

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 35 of 103 04/01/2018

The Query Mediator takes profit of the FUNCTION statements to resolve named expressions and
nested queries.

Named table expressions are defined in the header of a CloudMdsQL query, preceding the SELECT
keyword, and are instantiated in the FROM clause and/or from the definitions of other named
expressions. Named table expressions are represented inside the CQE as TableExpr objects.

For each named table expressions, the CQE executes a unique CREATE FUNCTION statement
before compiling the main query plan. To have a unique name per FUNCTION, the CQE uses the
QueryContext#id followed by the named of the named table expression, which is stored in the
TableExpr#name.

In Apache Derby documentation, the CREATE FUNCTION statement allows you to create Java
functions, which you can then use in an expression. For example:

CREATE FUNCTION TO_DEGREES (RADIANS DOUBLE) RETURNS DOUBLE PARAMETER

STYLE JAVA NO SQL LANGUAGE JAVA EXTERNAL NAME 'java.lang.Math.toDegrees'

Table 13: Apache Derby Create Function

The CREATE FUNCTION statement has the requirement that the linked Java function has the same
number of parameters and with a compatible type.

One important characteristic of named table expressions to take into account is that these can accept
dynamic parameters using the WITHPARAMS keyword. Let us see an example:

T1(x int, y string

 WITHPARAMS a string)@db1 =

(

 SELECT x, y FROM tbl WHERE id = $a

)

Table 14: Example of Dynamic Parameters using WITHPARAMS

In order to bind a CREATE FUNCTION statement with the same code to resolve a named table
expression, a Java code that allows working with a dynamic list of arguments is required. The
following method declaration (located in the WrapperTable class) is the candidate Java function to
bind for all FUNCTION statements.

public static ResultSet read(

String tableName, Long ctxtId, Object... args) throws Exception {

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 36 of 103 04/01/2018

// code

}

Table 15: Method to Bind all Function Statement

Unfortunately, one limitation of the current Apache Derby database, which has appeared a challenge
for the CQE, is that the CREATE FUNCTION statement does not accept Java method with a dynamic
list of parameters (the Objecté args parameter), which is a feature introduced in Java 5.

Specifically, when Java compiles a method call that corresponds to a method declaration with
dynamic arguments, creates an array with all the values that contain the call. Therefore, for the CQE
implementation, the way how Derby compiles FUNCTION calls to byte code was modified, simulating
the same behaviour. On the other hand, the way how derby validates if the bind Java method has a
compatible list of parameter types with the FUNCTION parameters required modifications too.

Now, assuming that the CQE admits CREATE FUNCTION statements with dynamic parameters,
the generated expression that the CQE would generate for the previous named table expression T1
is the following one:

CREATE FUNCTION CTXT234324_T1

(

 name VARCHAR(50), -- `T1ô

 ctxt BIGINT, -- ó234324ô

 a VARCHAR(50) ï- param

)

RETURNS TABLE

(

 x INT,

 y VARCHAR(50)

)

LANGUAGE JAVA

PARAMETER STYLE DERBY_JDBC_RESULT_SET

READS SQL DATA

EXTERNAL NAME óeu.coherentpaas.cqe.WrapperTable.readó

Table 16: CQE Generation Expression T1

Statement Initialisation

According to the CloudMdsQL specification language, there are three types of named table
expressions:

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 37 of 103 04/01/2018

Native named table expressions: Expressions of this type are referencing queries to data
stores using their native query mechanism. They are executed in the context of a particular datastore
connection.

SQL named table expressions: Expressions of this type can reference named tables from
the context of the current CloudMdsQL query, but can also reference tables from a corresponding
data store. If they are associated with a specific data store, the data store wrapper inside the query
engine processes them. Otherwise, they are processed as a sub query inside the query engine
applying the same transformation rules as the main query plan.

Python named table expressions: Expressions of this type are not referencing a data source,
but are executed in the context of the current CloudMdsQL query. The code of this named table
expressions are python.

Each type of named table expression needs to be solved with a different approach. Native named
table expressions need to be solved with the wrappers API; SQL named table expressions need to
be solved with the wrappers API if they are associated with a specific data store; Python named
table expressions need to be solved using a Python interpreter.

To support different approaches from the same Java code (WrapperTable class) that is executed
when a FUNCTION call is produced inside a SQL statement, the CQE adds two implementations for
the Statement wrappers API interface: EmbeddedStatement, which allow to resolve SQL named
table expressions not associated to any data store; and PythonStatementImpl, which allows to
resolve Python named table expressions.

The following UML class diagram shows the type hierarchy of Statement, where we can see which
classes are part of the Wrapper interfaces; which classes are part of the CQE; and which classes
are data store statement implementations.

Figure 16: UML Class Diagram of Hierarchy of Statement

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 38 of 103 04/01/2018

Main Query Plan Compilation

Apache Derby is a SQL engine and has its own SQL grammar written in JavaCC. When Derby is
built to generate an executable, a set of Java classes to parse SQL expressions are generated
automatically. As a result of executing the generated parser by JavaCC, Derby instantiates the
equivalent SQL abstract syntax tree (AST) for an SQL expression. Let us see an example starting
from the following SQL expression:

SELECT * FROM EMPLOYEES;

Table 17: SQL Expression

Derby generates the following AST (expressed in an UML object diagram):

In order to generate the statement byte code associated to an SQL AST, Derby delegates this
responsibility to each node type. Afterwards, the statement can be executed.

On the other hand, when a CloudMdsQL is parsed using Jackson, the main query plan has its own
abstract syntax tree, whose root node is an Operation.

Therefore, the problem of having an executable CloudMdSQL query is equivalent of having the
problem of transforming the Operation AST into the equivalent SQL AST. To design this language
transformation, the most common software engineering pattern to apply is the Visitor pattern.

The main characteristic of the Visitor pattern is to avoid delegating responsibilities to the AST node
types. Instead of it, the responsibility is moved to a Visitor class that has a method called visit per
each node type. On the other hand, the node types contain an accept method, which delegates to
the visitor instance the processing of its inner members/components. A practical result of this
separation is the ability to add new operations to existing object structures without modifying those
structures. The following picture is the UML diagram that summarises this design.

Figure 17: UML Object Diagram of AST

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 39 of 103 04/01/2018

The wrapper API contains the necessary interfaces to implement visitor classes for all the Operation
and Expression subtypes. The visitor class that has the responsibility to transform a CloudMdsQL
Operation into an SQL AST is called OperationToSQLVisitor. Now, let us see how this visitor works
internally.

An SQL query can have nested SQL queries. Therefore, when the OperationToSQLVisitor is
performing a traversal into the AST, whose root node is CloudMdsQL Operation, it needs to consider
different SQL scopes. Specifically, the implemented traversal is a pre-order algorithm. As a first step,
if it is necessary, a new scope is created with the current node to visit, and afterwards, the children
nodes are processed and the parent node collects their produced SQL nodes and updates the
current scope.

The scope of a SQL query is represented by the elements that appear on the top of several Stack
data structures. Specifically, the OperationToSQLVisitor works with the following stacks:

¶ Stack<QueryTreeNode>: The root node of an SQL query or subquery. A SelectNode,
UnionNode, or SubqueryNode are valid SQL root nodes;

¶ Stack<ResultColumnList>: The output columns of an SQL node (ex: columns produced
by a JoinNode, UnionNode, SelectNode or SubqueryNode node;

¶ Stack<FromList>: The set of Tables and Join expressions to take into account in the
current root SQL node;

¶ Stack<GroupByList>: The set of columns to take into account as a GROUP BY
expression into the current root SQL node;

¶ Stack<OrderByList>: The set of columns to take into account as an ORDER BY
expression into the current root SQL node.

Figure 18: UML Object Diagram of AST

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 40 of 103 04/01/2018

CloudMdsQL
node

SQL nodes Responsibility

Project SelectNode,
SubqueryNode,
FromList,
GroupByList,
OrderByList,
ResultColumnList

Initialise in different stacks and push as a
QueryTreeNode a SelectNode or a
SubqueryNode.

Select Sets the where and having condition into the
current QueryTreeNode.

Join JoinNode,
HalfOuterJoinNode

Creates the JoinNode or a. HalfOuterJoinNode.
It implies push in the context a new
ResultColumnList to infer the resulting columns
of the JoinNode. The created SQL JOIN node
is stored inside the FromList of the current
context.

Aggregate ResultColumn,
GroupByColumn

Returns in the ResultColumnList of the context,
the aggregate columns.

Call TableName,
MethodCallNode,
JavaToSQLValueNode,
FromVTI,

Creates a call to a table FUNCTION and
pushes it to the FromList stack.

ColRef ResultColumn Adds a column table into the ResultColumnList
of the context.

Const CharConstantNode,
NumericConstantNode
UserTypeConstantNode,
SQLBlob,
BooleanConstantNode

Creates a constant value

Func BinaryRelationalOperatorNode,
BinaryArithmeticOperatorNode,
UnaryArithmeticOperatorNode,
AndNode,
OrNode,
NotNode,
IsNullNode,
AggregateNode

Creates an SQL expression.

TableRef TableName,
MethodCallNode,
JavaToSQLValueNode,
FromVTI,

Creates a call to a table FUNCTION and
pushes it to the FromList stack. It is just
executed in CloudMdSQL nested queries
(named table expressions).

Sort OrderByColumn Adds a column into the OrderByList

Limit Sets a limit.

Param ParameterNode Adds a param into the global parameter list.

Union UnionNode Creates a UnionNode. It implies push into the
conrtext the UnionNode as QueryTreeNode and
new ResultColumnList to infer the resulting
columns of the UNION.

InList InListOperatorNode Creates a InListOperatorNode with all the
values.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 41 of 103 04/01/2018

CloudMdsQL
node

SQL nodes Responsibility

InQuery SubqueryNode,SelectNode,
FromList

Creates a subquery with the SubqueryNode

Execute Project/Union Transforms an execution into a SELECT(0). If
there are more than one call, it creates a tree of
Union nodes.

Table 18: CloudMdSQL Node and SQL Nodes Responsabilities

Operator Engine Architecture

Once a CloudMdsQL statement is compiled, the CQE generates the Java bytecode necessary to
make the statement executable. The instantiated SQL nodes described in the main query plan
compilation section generate this bytecode during the compilation process. The bytecode generation
is an entire functionality that originally Apache Derby performed for SQL expressions. Thus, the
Operator Engine consists of the execution process of this generated bytecode. In this section, we
will not cover the details about how Derby has designed the bytecode generation for each SQL node,
but we will complete the execution details associated for the previously created SQL FUNCTION
tables that represent named table expressions.

Main Query Plan Execution

In order to execute a CloudMdSQL query, the CQE needs to work with different statement types.
Indeed, as we have introduced in the Statement initialisation section, the CQE adds to
implementations to the Statement interface in order to achieve that all the CREATE FUNCTION
statements are linked with the same Java class file called WrapperTable. In this section we will see
the implementation details of this class.

All Java classes that are linked in a CREATE FUNCTION table statement must return a JDBC
ResultSet. Afterwards, Derby Operator Engine uses this interface to continue with the query
execution. However, the ResultSet interface implemented by the datastoresô wrapper and other CQE
components is not JDBC compliant and, consequently, the CQE needs to implement the Proxy
[Proxy] pattern to provide access to it though the JDBC ResultSet interface. The class name that
implements the Proxy pattern is called WrapperResultSet. The following UML diagram shows the
class structure described.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 42 of 103 04/01/2018

Figure 19: UML Flow Diagram of WrapperResultSet

The main responsibility of the WrapperTable class is to ask for the Wrappers API Statement
implementation associated with a specific named table that has been previously prepared in a
specific query context. Afterwards, the WrapperTable, needs to:

1. Set all the received parameter values in the statement. For example
setInt(parameterName, parameterValue);

2. Add all depending named table expression statements invoking the useNamedTable
method on the Statement instance;

3. Call the execute method with the corresponding transactional context;
4. Create a WrapperResultSet instance, which is a JDBC ResultSet implementation that

internally contains the ResultSet implementation returned by the Wrappers API
Statement interface, which does not implement the JDBC ResultSet interface;

5. Store the WrapperResultSet inside the QueryContext.

Python Statements Execution

Python named table expressions type allows writing Python expressions. Additionally, the
CloudMdsQL language specification defines some conventions when the user types a Python query
to publish rows and read rows from other named table expressions.

In order to read rows from other named table expressions, there is a special Python object
CloudMdsQL that holds the context of the current CloudMdsQL query execution. It can be used in
the Python code of a named table expression to instantiate other named expressions available in
the context of the same query. Let us see the following example:

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 43 of 103 04/01/2018

T2(x int, len_y int)@db1 = {*

 . ..

 rs = CloudMdsQL.T1

 while rs.next:

 yield (rs.getString(1))

 . ..

 rs.close()

*}

Table 19: Python code of a Named Table Expression to Instantiate other Named
Expressions

In order to execute Python code inside the CQE, we have used Jython, a Java library that interprets
Python code from the Java Virtual Machine. This library implements the Java Scripting API (JSR
223). Therefore, before running a Python code, the developer can define a scope, which sets for a
given name a Java object, which can be referenced from the Python code. The CQE uses this feature
through the PythonStatementImpl class to set the special CloudMdSQL object before running the
Python code.

The CloudMdsQL object is created by the CQE before instantiating the Python statements.
Concretely, the CQE generates a Python class with a method for each named table expression and
having the corresponding QueryContext as a member, and then creates a Python object of this class
using Jython. The following Python code is an example of a generated method that represents a
named table expression.

def T1(self):

 return self.ctx.getResultSet(ñT1ò);

Table 20: Example of Python Code which generated Method that Rapresents a named Table
Expression

Afterwards, every time the CQE needs to create a PythonStatementImpl, it invokes a setter with this
context object.

Another important convention is the way the user may produce rows from Python code. For this
purpose, the CloudMdsQL language uses the reserved keyword yield. In order to collect those
published rows using the Jython library inside the PythonStatementImpl, the statement object
generates a function that contains the Python code written by the user. Moreover, the statement
initialises a variable with the output returned by the invocation of that function.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 44 of 103 04/01/2018

For example:

def f4387375834() :

 . ..

 rs = CloudMdsQL.T1

 while rs.next:

 yield (rs.getString(1))

 . ..

 rs.close()

r4387375834 = f4387375834()

Table 21: Convention for Producing Rows from Python Code

Nested Queries Execution

Nested queries are named table expressions that need to be executed inside the CQE and are
written in CloudMdsQL language. In the statement initialisation section, we have introduced that
nested queries run inside of the EmbeddedStatement class, which is an implementation of the
wrappers API Statement. Internally, when the CQE prepares an EmbeddedStatement, what
happens is the same as with the main query plan. It runs the process of generating an SQL statement
from an Operation node using the OperationToSQLVisitor class.

Once these are ready to execute, it continues the same workflow as the main CloudMdsQL plan.

Queries Optimisation

The queries optimisation is mainly performed when the execution plan is generated from a
CloudMdSQL expression. Some new operations have been added to avoid expensive join
operations: scalars and IN clause. Moreover, the compiler applies a very-well known approach called
BIND JOIN to create more efficient execution plans for some queries.

Scalars

Scalars allow to execute a named table for a set of values. For example:

T0(c string WITHPARAMS x string)@db1 = (...)

T1 (a string, b string)@db2 = (...)

SELECT T0(a), b FROM T1

Table 22: Example of Scalars

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 45 of 103 04/01/2018

This query has the following behaviour: For all the rows emitted by the named table T1, the named
table T0 is executed for each of the values of the column 'a'. If T1 returns just a few rows, execute
T0 for every row returned by T1 becomes more efficient than retrieving all the rows from T0 and after
that, apply a JOIN. Data stores usually stores indexes in tables and thus, is more efficient to apply
few selections at data store level, than sending all the data and resolve the JOIN at CQE level.

Moreover, the CQE does not know about the data stores' statistics. Consequently, if the user had
written T0 JOIN T1, the worst execution plan would have been a nested loop, with the biggest table
as the inner one.

Scalars expressions (e.g T0(a)) return a single value for row or tables. However, Apache Derby
does not allow to execute functions that return tables (java.sql.ResultSet) as part of the SELECT
statements. For example, if we had defined T0 with the same CREATE FUNCTION statement,
pattern than T1, the CQE had executed something equivalent to:

CREATE FUNCTION

T0(

name VARCHAR(50), -- `T0ô

ctxt BIGINT, -- ó234324ô,

X VARCHAR(50))

RETURNS TABLE (C VARCHAR(50))

LANGUAGE JAVA PARAMETER STYLE DERBY_JDBC_RESULT_SET READS SQL DATA

EXTERNAL NAME 'WrapperFunction.read'

Table 23: Return of the Scalars Expression

In order to generate executable SQL statements for Apache Derby with scalar expressions, we
cannot invoke table functions that whose output is DERBY_JDBC_RESULT_SET. For this kind of
tables, we need to create as many definitions as returning columns they have and their returning
type is the same type than the returning columns. For example, in the case of T0, it should be:

CREATE FUNCTION

T0(

name VARCHAR(50), -- `T0ô

ctxt BIGINT, -- ó234324ô

X VARCHAR(50))

RETURNS java.lang.String

LANGUAGE JAVA PARAMETER STYLE JAVA NO SQL EXTERNAL NAME

'WrapperFunction.readString'

Table 24: Generate Executable SQL Statements for Apache Derby With Scalar Expressions

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 46 of 103 04/01/2018

Notice that the Java method (WrapperFunction.readString) is different because it needs to return a
Java object. Moreover, an additional detail is that Apache Derby requires that specified returned type
(e.g java.lang.String) must be the same as the one returned by the method signature. Therefore, the
WrapperFunction class, has the method:

public static String readString(String tableName , Long transactionId ,

Object... args) throws Exception;

Table 25: Wrapper Function Method

In this case, T0 has only one returning column. However, if T0 had been defined as follows:

T0(c string , d string WITHPARAMS x string)@db1 = (...)

Table 26: T0 Definition

The user should specify the returning column in the select statement. For example, the previous
main query should have been rewritten as follows:

SELECT T0(a).c, b FROM T1

Table 27: Specification of the Returning Column

For this situations, the CREATE FUNCTION statement requires an additional parameter to specify
the index that refers to the returning column that reports the execution plan for the evaluation of the
T0(a).c expression.

CREATE FUNCTION

T0(

name VARCHAR(50), -- `T0ô

ctxt BIGINT, -- ó234324ô

SCALAR_INDEX INTEGER, X VARCHAR(50))

RETURNS java.lang.String

PARAMETER STYLE JAVA NO SQL LANGUAGE JAVA EXTERNAL NAME

'WrapperFunction.readStringAt'

Table 28: Specification Index for Returning Column

Notice that the WrapperFunction class has been enriched with a set of methods for the execution of
scalar functions. Initially, this class only contained a generic read operation that returns a ResultSet,
but now, according the explained modifications to support scalars, this class has read methods for
each of the CloudMdsQL types (e.g readString) and for scalar calls for a specific column (e.g
readStringAt). The final list of WrapperFunction methods is as follows:

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 47 of 103 04/01/2018

public static ResultSet read(String tableName , Long transactionId ,

Object... args) throws Exception;

public static String readString(String tableName , Long transactionId ,

Object... args) throws Exception;

public static String readStringAt(String tableName , Long

transactionId ,Integer position , Object... args) throws Exception;

public static Integer readInt(String tableName , Long transactionId ,

Object... args) throws Exception;

public static Integer readIntAt(String tableName , Long transactionId ,

Integer position , Object... args) throws Exception;

public static Double readDouble(String tableName , Long transactionId ,

Object... args) throws Exception;

public static Double readDoubleAt(String tableName , Long transactionId ,

Integer position , Object... args) throws Exception;

public static Float readFloat(String tableName , Long transactionId ,

Object... args) throws Exception;

public static Float readFloatAt(String tableName , Long transactionId ,

Integer position , Object... args) throws Exception;

public static Date readDate(String tableName , Long transactionId ,

Object... args) throws Exception;

public static Date readDateAt(String tableName , Long transactionId ,

Integer position , Object... args) throws Exception;

public static byte [] readByteArray(String tableName , Long transactionId ,

Object... args) throws Exception;

public static Object[] readArrayAt(String tableName , Long transactionId ,

Integer position , Object... args) throws Exception;

public static Object[] readArray(String tableName , Long transactionId ,

Object... args) throws Exception;

public static Map readMap(String tableName , Long transactionId , Object...

args) throws Exception;

public static Map readMapAt(String tableName , Long transactionId , Integer

position , Object... args) throws Exception;

public static Long readLong(String tableName , Long transactionId ,

Object... args) throws Exception;

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 48 of 103 04/01/2018

public static Long readLongAt(String tableName , Long transactionId ,

Integer position , Object... args) throws Exception;

public static Boolean readBoolean(String tableName , Long transactionId ,

Object... args) throws Exception ;

public static Boolean readBooleanAt(String tableName , Long transactionId ,

Integer position , Object... args) throws Exception;

public static Seriali sable readSeriali sable (String tableName , Long

transactionId , Object... args) throws Exception;

public static Seriali sable readSeriali sableAt (String tableName , Long

transactionId , Integer position , Object... args) throws Exception .

Table 29: WrapperFunction class methods for the Execution of Scalar Functions

IN Clauses

The CloudMdSQL clauses support IN clauses, which is an efficient approach to resolve JOIN
operations when one of the tables return few values. Let us see the following CloudMdSQL.

T0(a string WITHPARAMS x string)@hbase = {* tbl.get($x) *}

T1(a string, b int)@leanxcale= (SELECT a, b FROM tbl WHERE c IN

T0('abc'))

SELECT * FROM T1 WHERE a IN T0(a)

Table 30: CloudMdSQL Clauses support In Clauses

This query has a subquery evaluated by a key-value data store, which returns a single row and
another one, which returns a set of values from a relational data store. Finally, the main query plan
is evaluating the IN clause without a nested loop, which had implied to sort both tables before joining.

There are two types of IN clauses:

¶ For a limited list of constant values (e.g IN (1,2,3,8,9))

¶ For a subquery(e.g IN T0(a))

Each of these types has a specific operation in the execution plan: InList and InQuery. The translation
to an SQL AST is performed different for each case:

¶ InList generates a InListOperatorNode

¶ InQuery generates a IN SubqueryNode.

Bind JOIN

CloudMdsQL uses bind join as an efficient method for performing semi-joins across
heterogeneous data stores that uses subquery rewriting to push the join conditions. For example,

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 49 of 103 04/01/2018

the list of distinct values of the join attribute(s), retrieved from the left-hand side subquery, is passed
as a filter to the right-hand side subquery.

Bind join for SQL subqueries. To illustrate the classical bind join method, let us consider the
following CloudMdsQL query Q1:

T1(id int, x int)@db1 = (SELECT a.id, a.x FROM a)

T2(id int, y int)@db2 = (SELECT b.id, b.y FROM b)

SELECT T1.x, T2.y FROM T2 JOIN BIND T1 ON T2.id = T1.id

Table 31: Bind Join for SQL Subqueries

To process this query the CQE will use the bind join method where the join condition will be bound
to the right-hand side of the join operation. First, the table T2 is retrieved from the data store db2
using its query mechanism. Then, the distinct values of T2.id are used as a filter condition in the
query that retrieves the table A from its data store. Assuming that the distinct values of T2.id are b1
é bn, the query to retrieve the right-hand side relation of the bind join uses the following SQL
approach (or its equivalent according to the data storeôs query language), thus retrieving from T1
only the rows that match the join criteria:

SELECT a.id, a.x FROM a WHERE a.id IN (b 1, é, bn)

Table 32: Processing the Query Table 31

In order to provide a relevant efficiency with the bind join query execution plan, the query compiler
internally performs a translation of the originally written query Q1 and generates a plan that actually
corresponds to the query below:

T1(id int, x int)@db1 = (SELECT a.id, a.x FROM a WHERE a.id IN T2_id())

T2(id int, y int)@db2 = (SELECT b.id, b.y FROM b)

T2_id(id int) = (SELECT DISTINCT id FROM T2)

SELECT T1.x, T2.y FR OM T2 JOIN T1 ON T2.id = T1.id

Table 33: Processing the Query Table 31

In this rewritten query, the intermediate named table T2_id is generated to return the distinct values
of T2.id and an IN clause predicate is pushed down to the T1 subquery to filter only those rows from
T1 that match the join criteria. Notice that the IN operator in the subquery to the data store db1 uses
a reference to the named table T2_id. In order to perform this operation, the final subquery to retrieve
the table T1 is composed at runtime by the db1 wrapper, which invokes the table storage to get the
result set of the intermediate table T2_id.

Bind join profitability. In the above example, using bind join will be reasonable only in the
presence of an index on the column a.id in data store db1, because such a presence will make the

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 50 of 103 04/01/2018

pushed down IN operator avoid an expensive table scan. In order to be able to determine possible
bind join profitability, the query compiler may get from data stores information about the availability
of indexes. Such metadata can be contained within the specification of data store capabilities that
each data store exposes to the query compiler.

Bind join for native/Python subqueries. The way to do the bind join analogue for
native/Python queries is through the use of a JOINED ON clause in the named table signature. For
example, let us consider a modification of the query Q1, where T1 is a native query defined as the
Python function below.

T1(id int, x int JOINED ON id REFERENCING OUTER AS T1_Outer_id)@db1 = {*

 for id in CloudMdsQL.T1_Outer_id:

 yield (id, db.get_x(id))

*}

Table 34: Bind Join for Native/Python Subqueries

As T1.id participates in an equi-join, the values b1 é bn will be provided to the Python code through
the iterator T1_Outer_id (declared in the signature) that corresponds to the set of join key values
from the outer table (the term ñouter tableò is referred to the other side of the join). Analogously to
the processing of bind join for SQL subqueries, the query compiler generates the intermediate
named table:

T1_Outer_id(id int) = (SELECT DISTINCT id FROM T2)

Table 35: Bind Join for Native/Python Subqueries

Update Operations

Use cases need to apply update operations on several data stores under the same CloudMdSQL
statement. The CQE supports updates through native and transform query plans. It means that
update operations can be performed through native data store queries or using SQL-like operations
(also referred as named actions) that can be interpreted by each wrapper that support transform
query plans. Let us see an example:

A0(WITHPARAMS x int, y string)@leanxc ale =

(INSERT INTO tbl(a, b, c) VALUES ($x, $y, 'c'))

EXECUTE A0(0, 'hello')

Table 36: Update Operations

In order to translate the EXECUTE call into an SQL expression, the CQE translates it to the following
pattern:

SELECT 0

FROM A0 UNION A1 UNION A2...

Table 37: Translation of the Execute call into an SQL Expression

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 51 of 103 04/01/2018

Where A0, A1,...An are the function tables referenced from the EXECUTE sentences. The update
statements executed from a function tables (INSERT, DELETE, UPDATE) has a specific operation
in the execution plan processed by the CloudMdsQL compiler.

Wrappers Overview

A Wrapper provides the interface that attaches a data store to the CloudMDS Query Engine (CQE).
It handles fragments of the execution plan that are intended for execution in a data store and delivers
interim results in the appropriate format.

The Wrapper Interface and implementations are based on the Java platform and conceptually similar
to the standard JDBC interface, namely, regarding the usage of Driver/Connection/Statement
objects to provide nested context for query execution, and a ResultSet to iterate over result data.
Namely, the main entry point to the wrapper is the DataStore interface, which provides Connection
contexts for the execution of Statements. The query is received as a Java mapping of the JSON data
model. Interaction with the Table Store is, in both directions, through the ResultSet batch iterator
interface.

Jena JDBC Wrapper

Apache Jena is a free and open source Java framework for building Semantic Web and Linked Data
applications. It has a JDBC driver (Jena JDBC) that allows access to the data whichever of the
several possible Jena server implementations is used. That makes Apache Jena a good candidate
to use from the CQE through a new datastore wrapper that will provide an easy integration of the
IT2Rail ontology data.

Jena JDBC is a set of libraries which provide SPARQL over JDBC driver implementations. This is a
pure SPARQL over JDBC implementation, there is no attempt to present the underlying RDF data
model as a relational model through the driver and only SPARQL queries and updates are supported.
It provides type 4 drivers in that they are pure Java based but the drivers are not JDBC compliant
since by definition they do not support SQL. Jena JDBC aims to be a pure SPARQL over JDBC
driver, it assumes that all commands that come in are either SPARQL queries or updates and
processes them as such.

The Jena JDBC Wrapper added to the CQE is based on the python native queries wrapper and uses
the Jena JDBC driver to access the Jena data. There are actually three Jena drivers provided
currently: In-Memory, TDB and Remote Endpoint.

All of them are supported by our new wrapper just by using the right options in the wrapper config
file:

Jena JDBC In Memory Wrapper Configuration

The In-Memory Jena driver uses an in-memory dataset to provide non-persistent storage. Itôs useful
for quick testing and very simple databases, usually provided directly using an ontology web
language (OWL) data file.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 52 of 103 04/01/2018

An example of the Jena wrapper configuration file to access an in memory Jena datastore:

wrapper.class = com.sparsity.wrappers.jenawrapper.JenaDatastore

wrapper.name = jena

jena.driver = mem

jena.database = dataset=/home/root/cqe/samples/JenaDB.owl

Table 38: Jena JDBC In Memory Wrapper Configuration

Jena JDBC TDB Wrapper Configuration

TDB is a component of Jena for RDF storage and query. It supports the full range of Jena APIs. TDB
can be used as a high performance RDF store on a single machine.

An example of the Jena wrapper configuration file to access a TDB Jena datastore:

wrapper.class = com.sparsity.wrappers.jenawrapper.JenaDatastore

wrapper.name = jena

jena.driver = tdb

jena.database = location=/home/root/cqe/tdbdata

Table 39: Jena JDBC TDB Wrapper Configuration

But Jena TDB itôs meant to be directly accessed from a single JVM at a time otherwise data
corruption may occur. So for the IT2Rail project, the Fuseki component which provides a SPARQL
server that can use TDB for persistent storage and provides the SPARQL protocols for query, update
and REST update over HTTP is higly recommended.

Jena JDBC Remote Endpoint Wrapper Configuration

Apache Jena Fuseki is a SPARQL server. It can run as an operating system service, as a Java web
application (WAR file), and as a standalone server. It provides security (using Apache Shiro) and
has a user interface for server monitoring and administration. It provides the SPARQL 1.1 protocols
for query and update as well as the SPARQL Graph Store protocol.

Fuseki is tightly integrated with TDB to provide a robust, transactional persistent storage layer, and
incorporates Jena text query and Jena spatial query. It can be used to provide the protocol engine
for other RDF query and storage systems.

An example of the Jena wrapper configuration file to access a remote Jena datastore:

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 53 of 103 04/01/2018

wrapper.class = com.sparsity.wrappers.jenawrapper.JenaDatastore

wrapper.name = jena

jena.driver = remote

jena.database =

query=http://localhost:3030/ds/query&update=http://localhost:3030/ds/upda

te

Table 40: Jena JDBC Remote Endpoint Wrapper Configuration

MySQL JDBC Wrapper

MySQL is one of the most popular Open Source full-featured relational database management
systems (RDBMS) based on SQL and is currently developed, distributed, and supported by Oracle
Corporation.

MySQL provides standards-based drivers for JDBC, ODBC, and . Net enabling developers to build
database applications in their language of choice. In addition, a native C library allows developers to
embed MySQL directly into their applications. This MySQL JDBC driver is used by our CQE MySQL
Wrapper to access the MySQL datastore.

An example of the MySQL wrapper configuration file to access a MySQL datastore:

wrapper.class = com.sparsity. wrappers.mysqlwrapper.MysqlDataStore

wrapper.name = mysql

mysql.host = hostWhereMySQLRuns

mysql.port = 3306

mysql.options = ?user=TheUsername&password=ThePassword

databaseName = TheDatabaseName

Table 41: MySQL JDBC Wrapper

MySQL is a database that can be used with SQL through JDBC, so the MySQL Wrapper is based
on the CQE generic JDBC Wrapper described in a following section.

Generic JDBC Wrapper

The Generic JDBC Wrapper handles both NATIVE and TRANSFORM query plans. The first already
include native SQL statements ready to be executed. The latter are converted to SQL statements
using the cqe.sqlgen utility package and then sent for server-side execution in the data store. As
shown in the figure, corresponding JDBC entities are kept for each of the Wrapper Interface entities.

A key design principle of the Generic JDBC Wrapper is that it allows queries to be compiled once
and reused a number of times. This means that translation from a JSON plan to SQL and generation
of a JDBC PreparedStatement, that corresponds to SQL compilation in the data store server happen

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 54 of 103 04/01/2018

at Wrapper Statement prepare. To fully achieve this, parameter values have to be dealt with and not
simply embedded in-line in the statement text.

Methods in the default implementation can be overridden to change and add functionality. This
functionality can be divided in SQL generation and execution, as detailed in the next sections.

Figure 20: JDBC of the Wrapper Interface Entities

SQL Generator

The CQE package contains a generic converter from transformable query plan fragments to SQL
using the Visitor pattern to traverse a tree of operators and expressions. It is thus conceptually similar
to the main query plan compilation described before, but with several key differences.

First, the output of the SQL generator is a flat string conforming to SQL instead of an object tree. As
an example, this is a challenge as a projection might have different meanings depending on the
position in the tree, leading to additional conditions in the WHERE or the HAVING clauses depending
on references to aggregate columns. Likewise, expressions used in different operators might end up
in the result set, and be referred to by name or have to be included inline in WHERE and ORDER
BY clauses.

Second, ColRef nodes that in an expression refer to columns in the input result sets to the operator
at which the expression is rooted, refer to columns by name instead of position and allow for some

Data StoreData Store

Wrapper

DataStore

Connection

Statement

Connection

Statement

getConnection

createStatement

ResultSetTxnCtx
QueryPlan

plan.*

Statement

JDBC
Driver

Connection

Statement

JDBC
Connection

Statement

getConnection

createStatement

JDBC
Statement

sqlgen.*

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 55 of 103 04/01/2018

ambiguity. For instance, it is possible to generate SQL from an operator tree that does not contain a
projection, thus leading to a star (*) in the projection clause.

Finally, SQL generation has to cope with potentially different implementations for Table Store access
from the external data store. Namely, it is conceivable that a data store is able to call back into the
Table Store through the Wrapper, or, as an alternative, that the Wrapper sets up a temporary table
in the data store with the named table content just before execution. To achieve this the SQL
generator provides as output, in addition to the SQL statement itself, a collection of named tables
used and the expressions to be used as parameters when calling into the Table Store.

The SQL generator also handles named parameters by inserting a question mark (?) in the SQL
statement text and providing the mapping between names and indexes, such that when the CQE
provides parameter values just before execution, these can be routed to the appropriate location in
the underlying JDBC prepared statement.

Statement Execution

Before execution, the CQE sets a value for each of the statement parameters. The Generic JDBC
Wrapper routes the values to the corresponding indexes in the underlying JDBC PreparedStatement.
The values are also cached, in case they are referred by expressions that need to be evaluated as
parameters to named tables.

Then the CQE provides callbacks for each of the named tables in the form of Parameteric instances.
These allow setting parameters and obtaining a result set. At this stage, the Generic JDBC Wrapper
just caches them.

The execution of a statement then has three main stages:

1. Set up named tables. This means resolving expressions used as parameters, if any. If
only constants or direct references to statement parameters are used, they can be used
directly. Otherwise, expressions are executed in the data store to get values. The Table
Store is then used to get a result set, which is used by the concrete implementation to
make it available to the execution;

2. Invoke execution in the JDBC prepared statement object;
3. Wrap the JDBC result set in a Wrapper result set that converts each datum to the

appropriate Java native data type and returns it to the CQE.

Finally, the Generic JDBC Wrapper also catches exceptions and converts them to corresponding
exceptions in the Wrapper Interface.

New Wrappers Sample Query

The sample query below will show how to use both new wrappers in a simple CQE query that will
query both datastores and join the results.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 56 of 103 04/01/2018

In this example, we have loaded a Product ontology sample file into an Apache Jena Fuseki server
with the following data:

ID Model # Division Line Location SKU Stock

1 ZX-3 Manufacturing support Paper machine Sacramento FB3524 23

2 ZX-3P Manufacturing support Paper machine Sacramento KD5243 4

3 ZX-3S Manufacturing support Paper machine Sacramento IL4028 34

4 B-1430 Control Enginnering Feedback line Elizabeth KS4520 23

5 B-1430X Control Enginnering Feedback line Elizabeth CL5934 14

6 B-1431 Control Enginnering Active sensor Seoul KK3945 0

7 DBB-12 Accessories Monitor Hong Kong ND5520 100

8 SP-1234 Safety Safety valve Cleveland HI4554 4

9 SPX-1234 Safety Safety valve Cleveland OP5333 14

Table 42: New Wrapper Sample Query

While a MySQL server contains information about the Sales managers of each location in the
following two tables:

¶ Managers:

ID Name City ID é

1 John Smith 1 é

2 Jane Doe 4 é

é é é é

¶ Cities:

ID Name Population é

1 Sacramento 493,025 é

2 Elizabeth 124,960 é

3 Seoul 10,290,000 é

4 Hong Kong 7,374,900 é

5 Cleveland 396,815 é

é é é é

Then, with both datastores properly configured in the CQE wrapper config files, we can write a simple
test application to run a query that gets the SKU code and the city of each product from the Jena
datastore using SPARQL, gets the sales manager name of each city from the MySQL datastore
using SQL and finally joins both results using SQL in the CQE derby engine.

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 57 of 103 04/01/2018

import java.sql.Connection;

import java.sql.DriverMana ger;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.Statement;

import java.util.ArrayList;

class CQESampleQuery {

public static void main(String [] args) throws Exception {

 // The CQE is based on Derby, so it can be used with the normal

Derby JDBC driver

 String EXTERNAL_DRIVER = "org.apache.derby.jdbc.ClientDriver";

 Class.forName(EXTERNAL_DRIVER);

 Connection c =

DriverManager.getConnection("jdbc:derby://cqehost.sparsity -

technologies.com:1527/db;create=true;");

 // Jena SPARQL query

 String jenaQuery = "PREFIX product:

<http://www.workingontologist.org/Examples/Chapter3/Product.owl#> "

 +"SELECT ?sku ?city "

 +"WHERE { "

 +"?prod product:Product_Manufacture_Location ?city . "

 +"?prod product:Product_S KU ?sku "

 +"} ";

 // T1 is like a "virtual table" resolved with a query to a Jena

database

 // Jena is not a SQL database, so it must be used with the CQE

python native query syntax

 String t1 = "T1(sku string, city string)@jena =ò+

 ò {* \ njr=jena.compute('"+jenaQuery+"') \ nwhile jr.next(): \ n

yield(jr.getString(\ "sku \ "), jr.getString(\ "city \ ")) \ njr.close() \ n*} \ n";

 // T2 is a table resolved as a query to a different MySQL database

 String t2 = "T2(salesManager string, city string)@mysql =ò+

 ò (SELECT managers.name, cities.name FROM managers, cities

WHERE managers.city = cities.id) \ n";

 // The CQE query runs T1, T2 and the final SQL query that joins the

results

 String query = t1 + t2 + "SELECT T1.sku, T2.salesManager FROM T1, T2

WHERE T1.city = T2.city";

 PreparedStatement stmt = c.prepareStatement(query);

 stmt.execute();

 ResultSet rs = stmt.getResultSet();

 int count=0;

 System.out.println("SKU \ tManager");

 while (rs.next()) {

Contract No. H2020 ï 636078

ITR-WP1-D-IND-030-05 Page 58 of 103 04/01/2018

 System.out.println(rs.getString(1)+" \ t"+ rs.getString(2));

 count++;

 }

 System.out.println("Total rows: "+count);

 rs.close();

 stmt.close();

 c.commit();

 c.close();

}

}

Table 43: Test Application to Run a Query that gets the SKU Code and the city of each
product from the Jena Datastore using SPARQL

5.1.4 Broker with managed Microservices

At the moment of design, a scalable, decentralised, robust, secure and interoperable platform builds

the basis for a microservices solution, based (as a technical facilitator) mainly in Sofia2 APIManager

Module.

Figure 21: Broker with Managed Microservices

In this way, Sofia2 APIManager module will provide the capability of configuring a broker layer that
will:

¶ Configure pass-through services to whatever TSP Service to be called;

¶ Capture useful information proactively, to be used to get statistics;

¶ Throttling and security control of the endpoints.

Integration with new Travel Service Providers will be done through a piece of SW development

(bottom side of the diagram), with the following characteristics:

¶ In charge of data and protocol transformation, facilitating an abstraction layer between

the actual TSP services and the functions required by the Semantic Broker.;

¶ The final goal of this layer will be to avoid new TSP to modify its actual systems,

delegating any adaptation to the Broker on it.

